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Time to onset of benefit/response
Motivation for topic arises from depression

 Current antidepressants take several weeks to obtain a meaningful
response

 Fast onset is important unmet need in MDD

 Patients in the throes of severe symptomatic exacerbation are at risk
for days to weeks before experiencing resolution

 faster onset of action would improve compliance

 This has compelled one to develop drugs with potential for early onset

 How does one assess time to onset and compare 2 treatments

 In depression, there has been much discussion on this topic and no strong
consensus on the best analytical approach



In studies of many indications, one collects information longitudinally
according to a planned schedule (i.e., weekly, hourly), and if the visits are
frequent enough

 the onset of action can be assessed by an analysis of the data at early
visits

 i.e., time of onset or response might be considered the time of the
first visit when one rejects A  PBO or A  PBO

 But difference from pbo need to be sustained at all subsequent
visits?

 Many statisticians (Leon, 2001, Mallinckrodt) have recommended the
approach above using MMRM (at least in depression)



 Early/Earlier response means LESS TIME to response

 if response can be defined (in terms of a binary variable)

 This compels one to compare the distribution of time to response
between/among treatments; i.e. SURVIVAL ANALYSIS METHODS

 But "ordinary" survival analysis is sensitive to both time to response and
proportion that respond over a sufficiently long-time period

 If we reject H0 : S2t  S1t it is either because proportion that
respond are different and/or time to response conditional on response is
different. Example from Tamura (2000):

 Trt 1: 80% respond all at week 3. Trt 2: 60% respond all at week 3

 For large sufficiently large N, log-rank would be statistically significant

 But misleading to state trt 1 works faster than trt 2



Mixture survival models for the analysis of time to response in
depression - Laska & Siegel (Psychopharmacology Bulletin,1995)

 Paradigm: population is a mixture of responders & nonresponders.

 Two properties needed to characterize response to a treatment:

1. p - the proportion that respond (≥50% decrease in B.L HAMD)
2. S∗ - the distribution of time to response conditional on

response

 Try to estimate 1 & 2 for two or more treatments by conducting a RCT

 Moreover for 2 treatments say, want to test: p1  p2 and S1
∗  S2

∗

 In the presence of dropouts, even testing of p1  p2 is not trivial

 Focus of this talk will be on testing S1
∗  S2

∗

 Need to incorporate data from dropouts as this provides information



 For some trt, in a mixed population of responders and nonresponders,
denote S(t)  Pr{Tt}

 Denote S∗(t)  Pr{Tt} among those that will respond to this treatment
 Let p be the probability of response (i.e., the proportion that respond). It

is assumed that those that respond will respond by at least time u
 S∗(t)Pr{Tt|T≤u} PtT≤u

PT≤u 
PT≤u−PT≤t

PT≤u  p−1−St
p  St−1−p

p
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Estimating S1
∗ and S2

∗, and then testing S1
∗  S2

∗

 Nonparametric methods (no strong distributional assumptions)

 use product limit or Kaplan–Meier (KM) methods for estimation

 to test S1
∗  S2

∗

 weighted log-rank statistic

 Cramer-von Mises statistic

 Parametric mixture methods models

 Use logistic regression to estimate p1 and p2 or a common p

 Use “time to event" distributions to estimate S1
∗ and S2

∗

 fit a model with a common

S
∗
, then fit a model resulting in


S 1
∗

and
S 2
∗
–statistically evaluate the change in the likelihood

 Semiparametric mixture models

 Extension of the Cox P.H. model (Sy and Taylor 2000, Peng and
Dear 2000, Li 2010). Will not be covering in this presentation.



Parametric Mixture Model Approach Using Common Event Time
Distributions such as the Weibull or Loglogistic

 Weibull distribution is as central to parametric survival analysis as the
normal distribution is to linear models. Some details about the Weibull;
for t,,  0

 St  e−t ft  t−1e−t ht  t−1

  is the shape parameter and  is the scale parameter; as  ↑, S∗t ↓ ∀ t
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Consider a Weibull mixture model in the case of two treatments
 Model the probability of response with a logistic regression model

 log pi
1−pi

 0  1Xi where pi  PrYi  R

PrY  R  fy  exp0  1X
1  exp0  1X

where X 
1 if trt1
0 if trt2

 For responders, model the time to response with a Weibull

ft|Y  R  Xt−1e−Xt where X 
1 if trt1
0 if trt2

Note that the scale parameter for trt 1 is , for trt 2 it is   if 1,
S1
∗tS2

∗t ∀ t

And S1
∗t  e−t  e−t  S2

∗t  h1
∗t
h2
∗t  



 Interpretation: among the responders that have yet to respond, the
chance of responding at any particular time, is  times greater in trt 1
than trt 2

 This Weibull model is not only a (conditional) proportional hazards
model but it is also a conditional accelerated failure time model

 This means the response time for one treatment is a multiple of the
response time for another treatment

 Specifically S1
∗t  S2

∗t where  is the acceleration factor

 Proportion of responders that respond by t in trt 1 is equal to the
proportion of responders that respond by t in trt 2

 Among responders, the time in which the proportion  respond is 
times greater in trt 2 than trt 1

 To show that the mixture Weibull model is also an accelerated failure
time model, note that

 S1
∗t  S2

∗t  e−t  e−t

 Recall, S1
∗t  e−t   , or   1/



 Maximum Likelihood procedures to estimate S1
∗, S2

∗ and to test S1
∗  S2

∗

First fit a null model assuming a common S∗ i.e., null 0,1,, ′

Then fit an expanded alternative model allowing a different S∗ for each
treatment, i.e., alt 0,1,,, ′.

Specifically, the construction of the likelihood for estimating alt

 A completing nonresponder’s contribution to the likelihood is:

1
1  exp0  1X

 A responder’s (who responded at time t) contribution to the likelihood is:

exp0  1X
1  exp0  1X

∗ Xt−1e−Xt

 A nonresponding dropout (at time t) contributes this to the likelihood:

1
1  exp0  1X


exp0  1X

1  exp0  1X
∗ e−Xt



 Maximize the log of the joint likelihood with respect to alt given the
data

 No closed form solution: need interative procedure

 Implement Newton-Ralphson with PROC NLP

 Similarly fit the null model, i.e., maximize log of the joint likelihood
with respect to null given the data

 A test of S1
∗  S2

∗ vs S1
∗ ≠ S2

∗ is based on two times the difference in the
maximized log likelihoods which is asymtotically chi-square with 1 d.f.

2logf

 alt|t,x −logf


 null|t,x~1



Mixture Model Using the Loglogistic Distribution

 Model using the Weibull assumes PH, and the hazard is monotonic

 A loglogistic distribution allows for departures from PH

 Instead, a proportional odds assumption will be imparted

 Loglogistic permits a unimodel hazard

 St  1
1t ft  t−1

1t2
ht  t−1

1t for t,,  0

 note that as  ↑, S∗t ↓ ∀ t



Consider a loglogistic mixture model in the case of two
treatments

 As before, model the probability of response with a logistic regression
model

 log pi
1−pi

 0  1Xi where pi  PrYi  R

PrY  R  fy  exp0  1X
1  exp0  1X

where X 
1 if trt1
0 if trt2

 For responders, model the time to response with a loglogistic distribution

ft|Y  R  t−1X

1  tX2 where X 
1 if trt1
0 if trt2

Note that “scale" parameter for trt 1 is , for trt 2 it is   if 1,
S1
∗tS2

∗t ∀ t



 Maximum Likelihood procedures to estimate S1
∗, S2

∗ and to test S1
∗  S2

∗

First fit a null model assuming a common S∗ i.e., null 0,1,, ′

Then fit an expanded alternative model allowing a different S∗ for each
treatment, i.e., alt 0,1,,, ′.

Specifically, the construction of the likelihood for estimating alt

 A completing nonresponder’s contribution to the likelihood is:

1
1  exp0  1X

 A responder’s (who responded at time t) contribution to the likelihood is:

exp0  1X
1  exp0  1X

∗ t−1X

1  tX2

 A nonresponding dropout (at time t) contributes this to the likelihood:

1
1  exp0  1X


exp0  1X

1  exp0  1X
∗ 1

1  tX



 Since S1
∗t  1

1t  S2
∗t, this loglogistic model is a conditional

accelerated failure time model

 Interpretation: Among responders, the time in which proportion 
response in trt 2 is  times greater than that of trt 1

 To show that the mixture loglogistic model is also a proportional odds
model, note that

 1 − S1
∗t  t

1t and that 1−S1
∗t

S1
∗t  t

 Likewise, 1−S2
∗t

S2
∗t  t  odds ratio is 

 Interpretation: among responders, the odds of responding prior to time t,
is  times greater for trt 1 than for trt 2



Nonparametric estimation of S∗(t)

S1
∗(t) 


S1t−1−

p1
p1

where

S 1, p 1 are obtained from KM methods
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Nonparametric tests for S1
∗  S2

∗

 If p1  p2, then a test of S1  S2 is a test of S1
∗  S2

∗

 since S1
∗  S2

∗ if and only if S1  S2

 If assume p1  p2 (perhaps, after testing) test S1  S2 with logrank test

 But logrank test of S1
∗  S2

∗ (when p1  p2) it will be highly inefficient
(e.g., power of .2 when more appropriate methods will have a power of
.9)

 Why? Log-rank test is most powerful in the case of "proportional
hazards". But in a mixture of responders and nonresponders in which
p1  p2, this condition is violated big time

 When p1  p2 Orazem (Ph.D. Thesis, Columbia University, 1991)
proposed a weighted log-rank test under the assumption of proportional
conditional hazards



 When p1  p2, the Orazem’s weighted log-rank test is

TWLR 
∑wtkd1k − E1k

∑w2tkVard1k
where wtk  1 − 1

∗t S1u
S1t

 wtk ′s are optimal weights when h2
∗t
h1
∗t   for all t ∈ 0,u

 under the null, an estimator of wtk is wtk  1 −

Su

Stk
∑ i1

k di/n∗ti

 n∗ti∑ tk≥ti
ck1-ck1-


Su

Stk

 is the est # of responders at “risk” at ti

 numerator in TWLR can be shown to be equal∑kd1k − dk
n1
∗tk
n∗tk



 Under the null, with no ties,TWLR converges in distrib. to N(0,1)



Tamura, et.al (Statistics in Medicine, 2000)

 Use a Cramer-von Mises test statistic to test S1
∗  S2

∗

 W2  −n1
p 1n2

p 2/n1
p 1  n2

p 2 S∗ 1t − S∗ 2t2dS∗t

 where S∗t  ∑nip iS∗ it/∑ni
p i is the est. of the common S∗(t)

 Tamura, et. al derived the asymptotic distribution - holds with ties

 Hard to tabulate percentiles

 So they proposed a Bootstrap procedure in order to obtain an empirical
distribution of W2 under the null.

 For group 1, for example, resample from Bp 1, G1, S∗

 If theW2equals the qth percentile of the empirical distribution, then the
p-value  100−q

100



 Tamura et. al conducted simulations to evaluate their procedure. I
simulated data from the exact same distributions as Tamura.

The simulation specifications are:
 Interval censoring case: visits at days 5,10,15,22,29,36,43

 Set p1  p2 . 6

 For group 1, TWeibull (  1/400,  2 truncated at day 43
median16.6 and 90% respond within 30 days

 Group 2: S2
∗(t)  {S1

∗(t)} 1 or 2.5; when 2.5, median10.4

 Censoring distribution (i.e., time to dropout), also truncated Weibull

 UW tr(  1/404,  4   35% censored prior to day 43

 Take min(t,u) and round up to nearest scheduled visit day

 Used a sample size of 75 per group, and 1000 iterations
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Time to onset data ~W tr med1  16.6, in alternative med2  10.4

Time to censoring ~W tr  35% dropout rate

p1 . 6, p2 . 6, n  75/group, 1000 iterations

Rejection rate
Method Null Alternative

Cramer-von Mises .048 .904
TWLR .052 .911
M-M Weibull .056 .929
M-M Log logistic .059 .875
log-rank test .045 .256



Exploratory analysis of a real dataset

 6 week MDD study with 5 groups, 3 doses of test drug, PBO, and a
positive control

 comparison in this illustration is between the positive control (N76, 51
completers) and one dose of the test drug (N79, 56 completers)

 Time to ≥50 reduction from baseline in HAM-D total

 partially sustained (≥35 reduction from baseline) at all subsequent
visits

 early terminators were classified as responders if they had a ≥50
reduction from baseline at last two visits

 Visits beyond 2 days of last day of medication were not considered

 Visits  38 days were set equal to 42 days
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Assessing Model Fit

Specifically, assess the appropriate of the chosen time to event
distribution

 Plot log of the KM estimated conditional cumulative hazard vs log time

 Plot KM estimated log-odds of response beyond t vs. log time

 Likelihood ratio test of the PH or PO assumption

 Comparing the KM-type estimates of the conditional hazard to those
estimated from the parametric models

 Assess whether the Cox-Snell residuals behave as if they are a censored
sample from unit exponential distribution



 Recall that for the Weibull model, S2
∗t  e−t

 log− logS2
∗t  log   log t

 Substitute the KM estimate

S 2
∗
t for S2

∗t in the above equation

 If a Weibull distribution is tenable, then

S 2
∗
t should be "close" to S2

∗t
and

 a plot of log− log

S 2
∗
tof log t should yield an approximately straight

line

 As shown earlier, for the loglogistic model, 1−S2
∗t

S2
∗t  t

 log S2
∗t

1−S2
∗t  − log −  log t

 a plot of log

S2
∗
t

1−

S2
∗
t

of log t should yield an approximately straight line



 In the Weibull model, the assumption of PH corresponds to the
assumption of a common shape parameter 

 Let each the conditional survivor function for each treatment group have
a separate scale and shape parameter, i.e., Si∗t  e−it

i

 compare the loglikelihood of this model with the PH model which
imposes the contraint of a common shape parameter 

 Analogously, the assumption of PO in the loglogistic model corresponds
to the assumption of a common shape parameter 

 Likelihood ratio test results:

 Test of PH in Weibull PH model: p.18

 Test of PO in loglogistic PO model: p.23



 For a particular group or sample of survival data, the KM type estimator
of the hazard in the interval tk to tk1 is dk

nkΔk
where dk is the number of

"deaths" at the kth death time, nk is the number at "risk" at time tk, and
Δk  tk1 − tk

 Let’s denote the KM estimator of St in the interval [tk, tk1 as
StΔk  j1

k 1 − dj
nj 



StΔk 


StΔk−11 −

dk
nk  

dk
nk 


StΔk−1−


StΔk


StΔk−1

 It then follows that a corresponding estimator of the conditional hazard
in the interval tk to tk1 is

S∗tΔk−1 − S∗tΔk

S∗tΔk−1Δk

 Compare these KM type conditional hazard estimates to those estimates
obtained from the Weibull and loglogistic models
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Cox-Snell residuals: rCi  − log

S iti

ti is the observed survival time for subject i

In general if T~St, then Y  − logST~ exp1

proof: fYy  fTt/ dy
dt  fTt/ fTtSt  SS−1e−y  e−y

 if model fits well, rCi will represent a censored sample ~exp1

Obtain rCi, treat as survival times and compute KM estimates

SrCi ;

residuals for censored times are considered censored observations

If log− log

SrCi vs log rCi yields a reasonably straight line with unit

slope and zero intercept model fits well

Can one apply this residual analysis in this mixture model setting?

In the case of 2 treatments, the Cox-Snell residual for the ith subject in
the gth group is: rCi  − logSg∗ti

pg  1 −
pg



A follow-up example in which the loglogistic parametric model as
specified apriori

 8 week MDD study with 3 groups, combo of test drug  positive control
(PC), PC alone, and PBO

 comparison is between combo (N103, 72 completers) and PC (N101,
74 completers)

 Time to ≥50 reduction from baseline in MADRS total

 must be sustained at all subsequent visits

 early terminators were classified as responders if they had a ≥50
reduction from baseline at last two visits

 Visits between 52 and 59 days were set equal to 56 days



Test of Si=0, yielded a p = 0.015; logrank test, p=0.28

Among responders, the time in which proportion p
respond in the dotted-line trt, is 1.2 times greater 
than that of the solid-line trt

Point estimate of Si is 1.21



Issues, concerns and criticisms of this mixture method/paradigm

 discard information by dichotomizing a nice “continuous" variable

 how does one dichotomize (onset, response, etc.)?

 sustained response or partially sustained, and for how long?

 interval censoring (i.e., unlike many applications of survival analysis,
don’t know precise time of response–only that it was between visits

 time to response and time to censoring may not be independent

 S1
∗  S2

∗ only meaningful if p1 ≥ p2 (perhaps requiring p 1 ≥
p 2?

 most applicable for comparing 2 efficacious treatments

 estimates of p and hence of S∗ can be unstable

 parametric models may not be robust to departures from assumptions

 no standard ready-to-use software procedures

 analyze time to response among responders to obtain

S i
∗
and for testing

 works reasonably well, but
 1) subgroup analysis; not ITT, 2) consored subjects provide info


